
Copyright © 2019 - Open Networking Foundation

SESSION 3
Using ONOS as the control plane

Copyright © 2019 - Open Networking Foundation

● Open Network Operating System (ONOS)

● Provides the control plane for a software-defined network
○ Logically centralized remote controller
○ Provides APIs to make it easy to create apps to control a network

● Runs as a distributed system across many servers
○ For scalability, high-availability, and performance

● Focus on service provider for access/edge applications
○ In production at scale with a major US telecom provider controlling OpenFlow

devices

What is ONOS? 95

Copyright © 2019 - Open Networking Foundation

ONOS releases

4-month release cycles

Avocet (1.0.0) 2014-12
…
Loon (1.11.0) 2017-08 (Initial P4Runtime support)
…
Raven (2.2.0) 2019-08 (latest - with P4Runtime, gNMI, gNOI)

96

Copyright © 2019 - Open Networking Foundation

ONOS architecture

OpenFlow gNMIP4Runtime ...more

OVS BMv2 Barefoot Cavium Mellanox Ciena Cisco Corsa

Fujitsu HP Huawei Juniper Lumentum Microsemi Polatis ...

FlowRule APITopology API FlowObjective API Intent API Packet API ...

Distributed core
State management, notifications, high-availability & scale-out

Northbound API
Device/protocol-agnostic
Java, REST, CLI, gRPC

Device driver
Allow device-specific variants

of standard protocols

Shared protocol
libraries

AppsAppsApps
Control and configure the network

using a global topology view
and independently of the device-specific details

97

Copyright © 2019 - Open Networking Foundation

Network programming API

OpenFlow P4Runtime Netconf ...

Flow Rule

OF-DPA
Pipeline

Single Table
Pipeline (OF 1.0)

P4 Program
Defined Pipeline

Flow Objective

98

Abstract
to

concrete

Mapping through drivers

Copyright © 2019 - Open Networking Foundation

BRCM OF-DPA OpenFlow 1.3
Pipeline

HP OpenFlow 1.3 Pipeline

Flow objective example

Peering Router Match on Switch port, MAC address, VLAN, IP

FlowObjective Service

HP Pipeliner BRCM OF-DPA Pipeliner

99

Copyright © 2019 - Open Networking Foundation

Driver behaviors in ONOS

● ONOS defines APIs to interact with device called “behaviors”
○ DeviceDescriptionDiscovery → Read device information and ports
○ FlowRuleProgrammable → Write/read flow rules
○ PortStatisticsDiscovery → Statistics of device ports (e.g. packet/byte counters)
○ Pipeliner → FlowObjective-to-FlowRules mapping logic
○ Etc.

● Behavior = Java interface
● Driver = collection of one or more behavior implementations

○ Implementations use ONOS protocol libraries to interact with device

Driver 1

P4Runtime

App

ONOS Driver 2

gNMI

100

Copyright © 2019 - Open Networking Foundation

ONOS key takeways

● Apps are independent from switch control protocols
○ High level network programming APIs

○ Same app can work with OpenFlow and P4Runtime devices

● Different network programming APIs
○ FlowRule API – pipeline-dependent
○ FlowObjective API – pipeline-independent

■ Drivers translate 1 FlowObjective to many FlowRule

● FlowObjective API enables application portability
○ App using FlowObjectives can work with switches with different pipelines
○ For example, switches with different P4 programs

101

Copyright © 2019 - Open Networking Foundation

P4 and P4Runtime support in ONOS

Copyright © 2019 - Open Networking Foundation

P4 and P4Runtime support in ONOS

ONOS originally designed to work with OpenFlow and
fixed-function switches.

Extended it to:

1. Allow ONOS users to bring their own P4 program
○ For example, today’s tutorial

2. Allow built-in apps to control any P4 pipeline without
changing the app
○ Today: topology and host discovery via packet-in / packet-out

3. Allow new apps to control custom/new protocols as defined
in the P4 program

Copyright © 2019 - Open Networking Foundation

Pipeconf - Bring your own pipeline!

● Package together everything necessary to let ONOS
understand, control, and deploy an arbitrary pipeline

● Provided to ONOS as an app
○ Can use .oar binary format for distribution

pipeconf.oar

1. Pipeline model
○ Description of the pipeline understood by ONOS
○ Automatically derived from P4Info

2. Target-specific extensions to deploy pipeline to device
○ E.g. BMv2 JSON, Tofino binary, etc.

3. Pipeline-specific driver behaviors
○ E.g. “Pipeliner” implementation: logic to map FlowObjectives to P4 pipeline

104

Copyright © 2019 - Open Networking Foundation

Pipeconf support in ONOS 105

Pipeline-agnostic
app (e.g. built-in apps)

Stratum

Pipeline-specific
FlowRules, Groups,
Meters, etc

Translation services
Uses pipeconf’s pipeline drivers

Protocol

Core

Events
(packet, topology, etc.)

P4Runtime

Pipeline-aware
app

Pipeconf
Store Pipeconf

(.oar)

FlowObjectives

gRPC

ONOS

Device drivers stratum-tofino stratum-bmv2

gNMI gNOI

Allow control of new or uncommon data
plane protocols, e.g. GTP, PPPoE, etc.

Define flow rules using same headers/action
names as in the P4 program. E.g match on
“hdr.my_protocol.my_field”

Copyright © 2019 - Open Networking Foundation

Device discovery and pipeconf deploy

Device Provider

Pipeconf Service

Stratum Device
Handshaker

ONOS core
Device/protocol driver

Pipeconf

P4Runtime Pipeline
Programmable

my-pipeconf.oar

Extensions:
BMV2_JSON

P4INFO

REGISTER

1

Get pipeconf
Bind pipeconf+device driver

DeviceID: bmv2:1
Management address
- grpc://192.168.56.1:5001
Pipeconf: my-pipeconf
Driver: stratum-bmv2

PUSH

netcfg.json 2

106

ONOS

Device bmv2:1

Connect device

Open connection to
gRPC server

3

Deploy pipeconf

P4Runtime
SetPipelineConfig

4

Copyright © 2019 - Open Networking Foundation

Flow operations

Flow Rule
Translation Serv.

P4Runtime Client

Pipeliner

Pipeline-agnostic
App

Flow Objective
API

P4Runtime Flow Rule
Behaviour

Pipeconf-based 3 phase translation:

1. Flow Objective → Flow Rule
● Maps 1 flow objective to many flow rules

2. Flow Rule → Table entry
● Maps standard headers/actions to P4-defined ones

E.g. ETH_DST→“hdr.ethernet.dst_addr”

3. Table Entry → P4Runtime message
● Maps P4 names to P4Info numeric IDs

Flow Rules
(many)

Table Entry

Pipeline
Interpreter

ONOS Core
Device/protocol driver

Pipeconf driver

Pipeline-aware
App

Flow Rule
API

Flow Objective

P4Runtime protobuf
messages

P4Info

107Define flow rules using same headers/action
names as in the P4 program. E.g match on
“hdr.my_protocol.my_field”

Copyright © 2019 - Open Networking Foundation

Pipeline Interpreter

● Driver behavior
● Provides mapping between ONOS well-known types and P4

program-specific ones

108

Mapping ONOS (Java) P4 (P4Info)

Match field ETH_DST (enum) “hdr.ethernet.dst_addr”
Match field name in P4Info table definition

Packet-in InboundPacket.java
 .receivedFrom().port()

“ingress_port”
Name of metadata field in P4Runtime PacketIn message.
Defined in P4Info as controller_packet_metadata
with name “packet_in”

...

Copyright © 2019 - Open Networking Foundation

P4Runtime support in ONOS 2.2 (Sparrow)

P4Runtime control entity ONOS northbound API

Table entry Flow Rule Service, Flow Objective Service
Intent Service

Packet-in/out Packet Service

Action profile group/members, PRE multicast
groups, clone sessions

Group Service

Meter Meter Service (indirect meters only)

Counters Flow Rule Service (direct counters)

Pipeline Config Pipeconf

Unsupported features - community help needed!
Parser value sets, registers, digests

109

Copyright © 2019 - Open Networking Foundation

ONOS+P4 workflow recap

● Write P4 program and compile it
○ Obtain P4Info and target-specific binaries to deploy on device

● Create pipeconf
○ Implement pipeline-specific driver behaviours (Java):

■ Pipeliner (optional - if you need FlowObjective mapping)
■ Pipeline Interpreter (to map ONOS known headers/actions to P4 program ones)
■ Other driver behaviors that depend on pipeline

● Use existing pipeline-agnostic apps
○ Apps that program the network using FlowObjectives

● Write new pipeline-aware apps
○ Apps can use same string names of tables, headers, and actions as in the P4 program

110

Copyright © 2019 - Open Networking Foundation

Exercise 3 overview

Copyright © 2019 - Open Networking Foundation

Environment

P4Runtime,
gNMI

netcfg.json

Pipeline-agnostic apps
use FlowObjective API

Pipeline-aware app
use FlowRule API

mn-stratum Docker container

onos:2.2.0 Docker container

Copyright © 2019 - Open Networking Foundation

Exercise 3 steps

● Modify pipeconf Java implementation
○ Map P4Runtime packet-in/out to ONOS-specific representation

● Start ONOS and Mininet

● Load app with pipeconf and netcfg.json

● Verify that link discovery works
○ Requires both packet-in and packet-out support

● Verify ping for hosts in the same subnet (via bridging)
○ Requires packet-in support for host discovery

Copyright © 2019 - Open Networking Foundation

Topology discovery via packet-in

Switch 1 Switch 2

ONOS

...

P4Runtime
channel

P4Runtime
channel

Copyright © 2019 - Open Networking Foundation

Topology discovery via packet-out/in

Switch 1 Switch 2

ONOS

...

For each switch, send LLDP as
packet-out on all ports
(discovered via gNMI)

LLDP: origin
switch1-port 2

1

Copyright © 2019 - Open Networking Foundation

Topology discovery via packet-in

Switch 1 Switch 2

ONOS

...

LLDP: origin
switch1-port 2

Intercept LLDP via packet-in at
the other end.2

Copyright © 2019 - Open Networking Foundation

Topology discovery via packet-in

Switch 1 Switch 2

ONOS

...

LLDP: origin
switch1-port 2

Learn about link by looking at:
1. LLDP payload (source device/port)
2. Packet-in device and ingress port

Received on
switch2-port1 !

3

LINK
DISCOVERED!

Copyright © 2019 - Open Networking Foundation

LLDP Provider App

● Automatically discover network links by injecting LLDP
packets in the network

● Reacts to device events (e.g., new switch connection)
○ Periodically sends LLDP packets via packet-out for each switch port

● Install packet-in requests (flow objective) on each device
■ Match: ETH_TYPE = LLDP, BDDP
■ Instructions: OUTPUT(CONTROLLER)

Copyright © 2019 - Open Networking Foundation

Host Provider App

● Learns location of hosts and IP-to-MAC mapping by
intercepting ARP, NDP and DHCP packets

● Reacts to device events (e.g., new switch connection)
● Install packet-in requests (flow objective) on each device

○ Match: ARP, NDP, etc
○ Instructions: OUTPUT(CONTROLLER)

● Parses packet-in to discover hosts

Copyright © 2019 - Open Networking Foundation

Pipeconf implementation

● ID: org.onosproject.ngsdn-tutorial
● Driver behaviors:

○ Pipeliner
■ Maps FlowObjective from LLDP and HostProvider apps
■ Use P4Runtime/v1model clone sessions to send packets to the CPU (packet-in)

○ Interpreter
■ Maps packet-in/out to/from ONOS internal representation
■ Maps ONOS known headers to P4Info-specific ones:

● e.g. ETH_TYPE → “hdr.ethernet.type”

● Target-specific extensions
○ bmv2.json, p4info.txt

Copyright © 2019 - Open Networking Foundation

netcfg.json (devices)

{
 "devices": {
 "device:leaf1": {
 "basic": {
 "managementAddress": "grpc://mininet:50001?device_id=1",
 "driver": "stratum-bmv2",
 "pipeconf": "org.onosproject.ngsdn-tutorial"
 },
 "fabricDeviceConfig": {
 "myStationMac": "00:aa:00:00:00:01",
 "isSpine": false
 }
 },
 ...

Copyright © 2019 - Open Networking Foundation

App architecture

Pipeconf L2 Bridging
Component

IPv6 Routing
Component

Other
Components

ONOS Core (northbound APIs)

Topology events
(device, links, hosts)

Insert flow rules,
groups, etc.

Register at app
activation

App ID: org.onosproject.ngsdn-tutorial

Copyright © 2019 - Open Networking Foundation

L2 bridging

Leaf switches should provide bridging for hosts in the same
subnet:
● Hosts send NDP Neighbor Solicitation (NS) requests to resolve the MAC

address of other hosts

● NDP NS packets are replicated (multicast) to all host-facing ports

● Other host replies with NDP Neighbor Advertisement (NA)

● ONOS learns about hosts by requesting a clone of all NDP NA/NS
packets as packet-ins (hostprovider built-in app)

● For each learned host, app installs a flow rule to forward packets for the
host MAC destination (bridging table)

Copyright © 2019 - Open Networking Foundation

How is bridging implemented?

h1a h1b h1c

ONOS

leaf1

Copyright © 2019 - Open Networking Foundation

Host discovery (NDP NS)

h1a h1b h1c

leaf1

Multicast replication +
CPU clone session

NDP NS message
(e.g. who has h1b MAC addr)

ONOS

Learn h1a Insert L2 unicast entry for h1a

2

1

3

Copyright © 2019 - Open Networking Foundation

Host discovery (NDP NA)

h1a h1b h1c

leaf1

Unicast forwarding +
clone session

NDP NA message
(e.g. h1b is at 00:00:...)

ONOS

Insert L2 unicast entry for h1b

1

2

3

Copyright © 2019 - Open Networking Foundation

Unicast forwarding

h1a h1b h1c

leaf1

Unicast forwarding

Unicast ethernet frame

ONOS

Copyright © 2019 - Open Networking Foundation

L2BridgingComponent.java
● Listens to device and topology events

● For each device, install:
○ Flow rule and group to replicate NDP NS to all host-facing ports

(l2_ternary_table)
○ Flow rule to intercept NDP NS/NA (ACL table)
○ Flow rule with L2 forwarding rule for each learned host

(l2_exact_table)

● Support bridging only for hosts attached to the same leaf

● Looks at topology to derive multicast group with host-facing
ports, no need to replicate NDP NS towards spines

Copyright © 2019 - Open Networking Foundation

ONOS terminology

● Criteria
○ Match fields used in a FlowRule

● Treatment
○ Actions/instructions of a FlowRule

● Pi* classes
○ Classes used to describe entities similar to P4Runtime ones
○ PI stands for protocol-independent
○ Examples

■ PiTableId: name of a table as in the P4 program
■ PiMatchFieldId: name of a match filed in a table
■ PiCriterion: match fields each one defined by its name and value
■ PiAction: action defined by its name and list of parameters

Copyright © 2019 - Open Networking Foundation

Exercise 3: Get Started

Open:
~/ngsdn-tutorial/README.md

~/ngsdn-tutorial/EXERCISE-3.md

Or use GitHub markdown preview:
http://bit.ly/ngsdn-tutorial-lab
Solution:
 ~/ngsdn-tutorial/solution

You can work on your own using the instructions.
Ask for instructors help when needed.

These slides:
http://bit.ly/ngsdn-tutorial-slides

Before starting!
Update tutorial repo
(requires Internet access)
cd ~/ngsdn-tutorial
git pull origin master
make pull-deps

P4 language cheat sheet:
http://bit.ly/p4-cs

Copyright © 2019 - Open Networking Foundation

Packet-in/out metadata
controller_packet_metadata {
 preamble {
 id: 67135753
 name: "packet_out"
 alias: "packet_out"
 annotations: "@controller_header(\"packet_out\")"
 }
 metadata {
 id: 1
 name: "egress_port"
 bitwidth: 9
 }
 metadata {
 id: 2
 name: "_pad"
 bitwidth: 7
 }
}

