Device Configuration in μONOS

Andrea Campanella, Sean Condon
Open Networking Foundation
<andrea,sean>@opennetworking.org
Overview

• Motivation & background
• System design & goals
• Core components
• Northbound interface
• Southbound interface
• Configuration GUI
• Model plugins
• End to end workflow
• Next steps
• How to contribute
Vision: Zero Touch Networking

Network Operation is a tradeoff

Traditional network: pick any two of the three

We want all three!

- **reliability**
- **scale**
- **efficient**

{scalable, unreliable, efficient}
Vision: Zero Touch Networking

70% of network failures happen during management operations, due to the high level of complexity of such operations across a wide variety of network types, devices, and services.

[1] Google lessons
https://ai.google/research/pubs/pub45623
onos-config Capabilities Overview

- Implements gNMI n/b and s/b APIs
- Multi-device configuration transactions
- Model driven, multi version support
- Rollback to previous points in time
- Device state through subscription
- Flat storage of configuration data in k/v store
- Configuration validation against YANG models
- Cloud Native architecture and deployment as 1 microservice
Core concepts

Network change
- A collection of Configurations

Configuration
- A collection of Changes
- For an online/ offline/ future/ past device

Change
- A collection of keys/values
- Immutable

Model Plugin
- A shared library of compiled YANG files

Opstate Cache
- Cache of devices Operational & State data
Northbound interface

3 gRPC interfaces
- defined as proto files

Admin
- Manage model plugins
- Manage Network Changes
- Rollback

Diags
- Access core objects (Configurations & Changes)

gNMI Server
- General Network Management Interface (from Open Config initiative)
Southbound interface

gNMI Client
- Read capabilities
- Set configuration
- Get state
- Subscribe to state

Operational state cache
- Driven by model plugin
- After connection reads all state attributes
- Then subscribe for further changes
- Expose as state to other subsystems

Other protocols (e.g. NETCONF)
- Build external adapter/controller
User Interfaces (Web or command line)

- Connects to onos-config through gRPC (northbound)
- Driven by model plugins
- Configuration editor
 - Create or rollback network wide changes
- Modular extension of classic ONOS GUI
- Core views
 - Network changes
 - Configurations
 - Models
ModelPlugin

- User creatable plugin for onos-config
- YANG model driven
 - YGOT generated go code
- Bundled as shared object library
 - <xyz>.so.1.0.0
- Can be loaded dynamically or at startup (define in helm chart)
- Drives validation of configuration on each change
- Drives GUI options/prompts/metadata

https://github.com/onosproject/onos-config/blob/master/docs/modelplugin.md
End To End Device Workflow 1/2

1. Design YANG model of real device capability
2. Build Model Plugin from template
3. Load the model plugin
4. Create initial configuration for device(s) (optional)
End To End Device Workflow 2/2

1. Connect to a device(s)
 a. linked by device type and version of model

2. Configure parameters on device(s)
 a. View Read Write paths as guide for new attributes

3. Observe and subscribe to state of device through gNMI NBI

4. Add a new version of the model
 a. Migrate configuration and push to device
Next steps

- Fully distributed implementation
 - based on Atomix Go client
- Device specific driver mechanism (plugin driven)
- Platform hardening
 - Security
 - Performance
 - Events handling at scale
- Extend GUI functionality
 - Search bar
 - Time series data plotting
- Documentation, tutorials
How to get involved

• Join #micro-onos channel on onosproject.slack.com
• Attend ONOS TST meetings
 • bi-weekly Wednesdays at 9:00 PST/PDT
• Fork and send pull-requests to https://github.com/onosproject repositories
• Participate in onos-dev@onosproject.org mailing list
• Questions?
 • email andrea@opennetworking.org, sean@opennetworking.org
Thank You

Follow Up Links:
- μONOS repositories
- Atomix repositories
- Stratum repositories
- gNMI specification