

Core Information Model
(CoreModel)

TR-512.12

Software

Version 1.4
November 2018

TR-512.12 Core Information Model – Software Version 1.4

Page 2 of 19 © 2018 Open Networking Foundation

ONF Document Type: Technical Recommendation

ONF Document Name: Core Information Model version 1.4

Disclaimer

THIS SPECIFICATION IS PROVIDED "AS IS" WITH NO WARRANTIES

WHATSOEVER, INCLUDING ANY WARRANTY OF MERCHANTABILITY,

NONINFRINGEMENT, FITNESS FOR ANY PARTICULAR PURPOSE, OR

ANY WARRANTY OTHERWISE ARISING OUT OF AN Y PROPOSAL,

SPECIFICATION OR SAMPLE.

Any marks and brands contained herein are the property of their respective owners.

Open Networking Foundation

1000 El Camino Real, Suite 100, Menlo Park, CA 94025

www.opennetworking.org

©2018 Open Networking Foundation. All rights reserved.

Open Networking Foundation, the ONF symbol, and OpenFlow are registered trademarks of the

Open Networking Foundation, in the United States and/or in other countries. All other brands,

products, or service names are or may be trademarks or service marks of, and are used to

identify, products or services of their respective owners.

Important note

This Technical Recommendations has been approved by the Project TST, but has not been

approved by the ONF board. This Technical Recommendation is an update to a previously

released TR specification, but it has been approved under the ONF publishing guidelines for

'Informational' publications that allow Project technical steering teams (TSTs) to authorize

publication of Informational documents. The designation of '-info' at the end of the document ID

also reflects that the project team (not the ONF board) approved this TR.

http://www.opennetworking.org/

TR-512.12 Core Information Model – Software Version 1.4

Page 3 of 19 © 2018 Open Networking Foundation

Table of Contents

Disclaimer .. 2

Important note ... 2

Document History ... 4

1 Introduction ... 5

1.1 References .. 5

1.2 Definitions ... 5

1.3 Conventions .. 5

1.4 Viewing UML diagrams ... 5

1.5 Understanding the figures ... 5

2 Introduction to Software ... 6

3 Purpose and essentials of the Software Model ... 7

3.1 Background ... 7

3.2 Model .. 7

3.2.1 File System Model .. 8
3.2.1.1 Directory ... 8

3.2.1.2 File .. 9

3.2.1.3 FileSystem .. 9

3.2.1.4 FileSystemEntry.. 10

3.2.1.5 SymbolicLink ... 10

3.2.2 Core Software Model .. 10
3.2.2.1 InstalledSoftwareComponent ... 11

3.2.2.2 RunningOperatingSystem .. 12

3.2.2.3 RunningSoftwareApplication .. 13

3.2.2.4 RunningSoftwareProcess ... 13

3.2.3 Virtual Machine Model .. 14
3.2.3.1 RunningHostOsVmm .. 15

3.2.3.2 RunningNativeVmm .. 15

3.2.3.3 RunningVirtualMachine .. 16

3.2.3.4 RunningVirtualMachineMonitor .. 16

3.2.4 Container Model ... 16
3.2.4.1 RunningContainer ... 17

3.2.4.2 RunningContainerEngine ... 18

3.2.5 Software Model in Context ... 18

4 Software Examples ... 19

TR-512.12 Core Information Model – Software Version 1.4

Page 4 of 19 © 2018 Open Networking Foundation

List of Figures

Figure 2-1 – Hosted VM Model from [Fernandez]... 7

Figure 3-1 Skeleton Class Diagram of key object classes .. 8

Figure 3-2 Skeleton Class Diagram of key object classes .. 11

Figure 3-3 Skeleton Class Diagram of key object classes .. 15

Figure 3-4 Skeleton Class Diagram of key object classes .. 17

Figure 3-5 Software Model in context ... 19

Document History

Version Date Description of Change

1.4 November 2018 Version 1.4 (Initial Version)

TR-512.12 Core Information Model – Software Version 1.4

Page 5 of 19 © 2018 Open Networking Foundation

1 Introduction

This document is an addendum to the TR-512 ONF Core Information Model and forms part of

the description of the ONF-CIM. For general overview material and references to the other parts

refer to TR-512.1.

1.1 References

For a full list of references see TR-512.1.

1.2 Definitions

For a full list of definition see TR-512.1.

1.3 Conventions

See TR-512.1 for an explanation of:

• UML conventions

• Lifecycle Stereotypes

• Diagram symbol set

1.4 Viewing UML diagrams

Some of the UML diagrams are very dense. To view them either zoom (sometimes to 400%),

open the associated image file (and zoom appropriately) or open the corresponding UML

diagram via Papyrus (for each figure with a UML diagram the UML model diagram name is

provided under the figure or within the figure).

1.5 Understanding the figures

Figures showing fragments of the model using standard UML symbols as well as figures

illustrating application of the model are provided throughout this document. Many of the

application-oriented figures also provide UML class diagrams for the corresponding model

fragments (see TR-512.1 for diagram symbol sets). All UML diagrams depict a subset of the

relationships between the classes, such as inheritance (i.e. specialization), association

relationships (such as aggregation and composition), and conditional features or capabilities.

Some UML diagrams also show further details of the individual classes, such as their attributes

and the data types used by the attributes.

../TR-512.1_OnfCoreIm-Overview.pdf
../TR-512.1_OnfCoreIm-Overview.pdf
../TR-512.1_OnfCoreIm-Overview.pdf
../TR-512.1_OnfCoreIm-Overview.pdf
../TR-512.1_OnfCoreIm-Overview.pdf

TR-512.12 Core Information Model – Software Version 1.4

Page 6 of 19 © 2018 Open Networking Foundation

2 Introduction to Software

The focus of this document is on the software aspects of network devices and compute hosts, and

can be split into two broad areas:

1. Software inventory (similar to hardware inventory)

2. Software functionality (equivalent to 'running hardware', which isn't explicitly modelled

in the ONF CIM)

Note that we want to reuse the existing functionality classes, ProcessingConstruct and

ConstraintDomain because we want to decouple the provided functionality from how it is

implemented (in hardware only, in software only or a combination of both hardware and

software).

Another challenge is to link everything together, so that the model can:

• Show how running software provides functionality (similar to running hardware)

• Support management of memory, CPU and storage capacity (related back to its usage by

running software)

• Show how the combination of hardware and software together produces functionality

• Consistently represent software running directly on hardware CPU and memory as well

as the VMM/VM and container cases

Note that there are a number of scenarios that the software model should cover, including:

• Hypervisor/VMM as running software hosts VMs

• VM as running software has guest operating system

• operating system as running software enables running applications

• VM Image is installed element

• (Linux) container as running software enables running applications

• Software agent as running software

• Container engine as running software hosts containers

• Container as running software enables running applications

• Container image is installed element

A lot of research found only one paper that has a model useful for this subject [Fernandez],

which was used as the starting point for the VM part of the model.

Note that the TR-512 model:

• Also support a bare metal hypervisor (in effect by adding an association from Hardware

to VMM in the diagram below).

• Doesn't include VM Images (VMI) or a repository for the images.

TR-512.12 Core Information Model – Software Version 1.4

Page 7 of 19 © 2018 Open Networking Foundation

Figure 2-1 – Hosted VM Model from [Fernandez]

A data dictionary that sets out the details of all classes, data types and attributes is also provided

(TR-512.DD).

3 Purpose and essentials of the Software Model

3.1 Background

The ONF CIM currently represents all types of functionality, but only relates hardware provided

functionality back to its providing implementation. The aim of this module is to provide a similar

representation for functionality that is provided by software. This allows the representation of not

only the functionality, but also how it is implemented. For example, a BGP ProcessingConstruct

instance may require a separate BGP software process, and that running software process may

consume a certain amount of CPU and memory. The software model will tie this all together, to

enable management of CPU and memory capacity and also how functionality is provided.

3.2 Model

Representing the software inventory requires us to show where the software is stored. To do this

we will also define a file system model.

TR-512.DD_OnfCoreIm-DataDictionary.pdf

TR-512.12 Core Information Model – Software Version 1.4

Page 8 of 19 © 2018 Open Networking Foundation

3.2.1 File System Model

A FileSystem contains FileSystemEntries which can either be Files or Directories. Directories

can contain Files and Directories. This model contains the key attributes only and can be

extended in the future if required.

Note that this document does not define a storage model.

CoreModel diagram: Software-FileSystem

Figure 3-1 Skeleton Class Diagram of key object classes

3.2.1.1 Directory

Qualified Name: CoreModel::CoreSoftwareModel::ObjectClasses::FileSystem::Directory

A Directory is a collection of Files and other Directories. Because a Directory can contain other

Directories, this allows a hierarchical file system to be represented.

Inherits properties from:

• FileSystemEntry

This class is Experimental.

TR-512.12 Core Information Model – Software Version 1.4

Page 9 of 19 © 2018 Open Networking Foundation

Table 1: Attributes for Directory

Attribute Name
Lifecycle Stereotype

(empty = Mature)
Description

_fileSystemEntry
 Experimental

Directory entry, which can be a File or another Directory.

3.2.1.2 File

Qualified Name: CoreModel::CoreSoftwareModel::ObjectClasses::FileSystem::File

A File is a data structure used to store information (user data, commands, software etc.) in a

computer system. Note that in this CIM class, we are only storing the metadata associated with

the File, not the actual contents of the File.

Inherits properties from:

• FileSystemEntry

This class is Experimental.

Table 2: Attributes for File

Attribute Name
Lifecycle Stereotype

(empty = Mature)
Description

size
 Experimental

The size of the File, in bytes.

lastModifyTime
 Experimental

The date time that the File was last modified.

checksum
 Experimental

A checksum that can be used to validate the contents of the File (in case of

corruption or malicious changes) using a hashing algorithm like MD5 or

SHA1.

3.2.1.3 FileSystem

Qualified Name: CoreModel::CoreSoftwareModel::ObjectClasses::FileSystem::FileSystem

A FileSystem organizes the data on a storage system so that it can be easily created, updated and

accessed. It manages the Directories and also the metadata for the Files.

This class is Experimental.

Table 3: Attributes for FileSystem

Attribute Name
Lifecycle Stereotype

(empty = Mature)
Description

_fileSystemEntry
 Experimental

The root FileSystem entries, which can be Files or Directories.

TR-512.12 Core Information Model – Software Version 1.4

Page 10 of 19 © 2018 Open Networking Foundation

3.2.1.4 FileSystemEntry

Qualified Name: CoreModel::CoreSoftwareModel::ObjectClasses::FileSystem::FileSystemEntry

FileSystemEntry is an abstraction of File and Directory, useful when there is a need to reference

both classes. It also allows for an easy representation of a hierarchical filesystem.

This class is abstract.

This class is Experimental.

Table 4: Attributes for FileSystemEntry

Attribute Name
Lifecycle Stereotype

(empty = Mature)
Description

isReadOnly
 Experimental

If the File contents can be modified or not.

isHidden
 Experimental

If the File is hidden by the FileSystem.

pathName
 Experimental

The full pathname of the entry, back to the root Directory.

localName
 Experimental

The name of the entry in its Directory.

createDate
 Experimental

The date that the entry was created.

3.2.1.5 SymbolicLink

Qualified Name: CoreModel::CoreSoftwareModel::ObjectClasses::FileSystem::SymbolicLink

A SymbolicLink is a File that contains a path reference to a File or a Directory.

Inherits properties from:

• File

This class is Experimental.

Table 5: Attributes for SymbolicLink

Attribute Name
Lifecycle Stereotype

(empty = Mature)
Description

_fileSystemEntry
 Experimental

The FileSystemEntry that this SymbolicLink refers to.

3.2.2 Core Software Model

InstalledSoftwareComponent records the software artifacts available to be run and their location

in the FileSystem.

RunningSoftwareProcess is an abstract class that represents all currently running software

processes.

TR-512.12 Core Information Model – Software Version 1.4

Page 11 of 19 © 2018 Open Networking Foundation

RunningSoftwareApplication is the general case to be used except for the special OS, VMM/VM

and container cases which have their own concrete subclasses.

RunningOperatingSystem is recorded as a special case of RunningSoftwareProcess (that other

software processes can run in), so there are separate associations for these two cases.

Usually only the RunningOperatingSystem would be attached to a ConstraintDomain, but there

may be other cases where a RunningSoftwareApplication to ConstraintDomain association

instance may be required (such as distributed software processes).

The FileSystem model relates the RunningSoftwareProcesses to the

InstalledSoftwareComponents. If this information is not available (and hence the FileSystem part

of the model is not populated) then the model can still be used, but the linkage between installed

and running software won't be available.

CoreModel diagram: Software-RunningSoftware

Figure 3-2 Skeleton Class Diagram of key object classes

3.2.2.1 InstalledSoftwareComponent

Qualified Name:

CoreModel::CoreSoftwareModel::ObjectClasses::RunningSoftware::InstalledSoftwareCompone

nt

TR-512.12 Core Information Model – Software Version 1.4

Page 12 of 19 © 2018 Open Networking Foundation

InstalledSoftwareComponent is part of the software inventory. It represents an application or an

application suite or an application (feature) option. It is the unit of installation. Note that this is

operating system dependent. For example, Microsoft DOS 3.3 didn't have an installation

manager.

This class is Experimental.

Table 6: Attributes for InstalledSoftwareComponent

Attribute Name
Lifecycle Stereotype

(empty = Mature)
Description

name
 Experimental

The name of the installed component as returned by the operating system.

version
 Experimental

The version of the installed component as returned by the operating system.

serialNumber
 Experimental

As part of software licensing, a serial number may be available for the

installation.

_installationFile
 Experimental

If available, the File that the installation was from.

_childInstalledSoftwareComponent
 Experimental

References to any child installations.

_installedFileSystemEntry
 Experimental

References to any Directories or Files created or used by the installation.

Note that installations may share files. So installation 1 may create key.dll

in a common area, and installation 2 would create this if it wasn't present.

Because it is already present, installation 2 just references the file. Now if

installation 1 is uninstalled, key.dll is not removed as there is still a
reference to it.

3.2.2.2 RunningOperatingSystem

Qualified Name:

CoreModel::CoreSoftwareModel::ObjectClasses::RunningSoftware::RunningOperatingSystem

An operating system is a running software process that enables software applications to utilize

the computer's hardware.

Inherits properties from:

• RunningSoftwareProcess

This class is Experimental.

Table 7: Attributes for RunningOperatingSystem

Attribute Name
Lifecycle Stereotype

(empty = Mature)
Description

_runningSoftwareProcess
 Experimental

The software processes running under this operating system.

_runningContainerEngine
 Experimental

The running container engines supported by the running operating system.

TR-512.12 Core Information Model – Software Version 1.4

Page 13 of 19 © 2018 Open Networking Foundation

Attribute Name
Lifecycle Stereotype

(empty = Mature)
Description

_runningHostOsVmm
 Experimental

The host OS VMMs running under this operating system.

3.2.2.3 RunningSoftwareApplication

Qualified Name:

CoreModel::CoreSoftwareModel::ObjectClasses::RunningSoftware::RunningSoftwareApplicatio

n

This covers generic software processes that don't have a special subclass (operating system,

virtual machine and container special cases have their own specific subclasses).

Inherits properties from:

• RunningSoftwareProcess

This class is Experimental.

3.2.2.4 RunningSoftwareProcess

Qualified Name:

CoreModel::CoreSoftwareModel::ObjectClasses::RunningSoftware::RunningSoftwareProcess

This is the unit of software execution. It could be a running application or a thread (the smallest

level of software execution).

This class is abstract.

This class is Experimental.

Table 8: Attributes for RunningSoftwareProcess

Attribute Name
Lifecycle Stereotype

(empty = Mature)
Description

processId
 Experimental

The identifier provided by the operating system.

priority
 Experimental

The process priority which is used by a multi-tasking operating system to

assign resource allocations for the different running software processes.

invokingUser
 Experimental

The username of the account that invoked the process.

invokingCommand
 Experimental

The command string that invoked the process.

timeInvoked
 Experimental

The date time when the process was invoked.

runState
 Experimental

The current run state. A software process may be actively running or
suspended (or some other state supported by the operating system).

name
 Experimental

The name of the process as assigned by the operating system.

TR-512.12 Core Information Model – Software Version 1.4

Page 14 of 19 © 2018 Open Networking Foundation

Attribute Name
Lifecycle Stereotype

(empty = Mature)
Description

description
 Experimental

The description of the process as assigned by the operating system.

_executable

A reference to the executable file (invoked via the invokingCommand).

Note that the invoking command may not list the full file path.

_childSoftwareProcess
 Experimental

References to a software process's subprocesses and threads.

_openFile
 Experimental

References to any files opened and/or locked by the running process.

3.2.3 Virtual Machine Model

A VirtualMachineMonitor (VMM) or Hypervisor, is a type of software process that can run

VirtualMachines (VM).

There are two types of VMMs :

• Native (bare metal) – that run directly on the hardware (type-1)

• Hosted – that run in a host operating system (type-2)

A VMM is used to import, create, run, suspend, halt and delete VMs.

Note that we talk of a VMM running a VM, but whether the VMM runs each VM as a software

process or not is not visible to us, so it is not shown as a subclass of RunningSoftwareProcess.

A hosted hypervisor process will be visible to the host operating system, but not the VMs

themselves.

RunningVirtualMachine has a ConstraintDomain associated with it (similar to the

ConstraintDomain for the physical case). The guest RunningOperatingSystem instances are

linked to this ConstraintDomain instance, coupling the RunningVirtualMachine to the guest

operating system. Note the linking via ConstraintDomain rather than with direct associations, as

this gives the flexibility to mix and match various hardware and software combinations.

TR-512.12 Core Information Model – Software Version 1.4

Page 15 of 19 © 2018 Open Networking Foundation

CoreModel diagram: Software-VirtualMachine

Figure 3-3 Skeleton Class Diagram of key object classes

3.2.3.1 RunningHostOsVmm

Qualified Name:

CoreModel::CoreSoftwareModel::ObjectClasses::VirtualMachine::RunningHostOsVmm

A Virtual Machine Monitor (VMM or Hypervisor) running in a host operating system (type-2).

Inherits properties from:

• RunningVirtualMachineMonitor

This class is Experimental.

3.2.3.2 RunningNativeVmm

Qualified Name:

CoreModel::CoreSoftwareModel::ObjectClasses::VirtualMachine::RunningNativeVmm

A Virtual Machine Monitor (VMM or Hypervisor) running directly on the hardware (bare metal

or type-1).

Inherits properties from:

TR-512.12 Core Information Model – Software Version 1.4

Page 16 of 19 © 2018 Open Networking Foundation

• RunningVirtualMachineMonitor

This class is Experimental.

3.2.3.3 RunningVirtualMachine

Qualified Name:

CoreModel::CoreSoftwareModel::ObjectClasses::VirtualMachine::RunningVirtualMachine

This represents a VirtualMachine that is running, and hence can provide and consume resources.

It isn't shown as a subclass of RunningSoftwareProcess as it may not be a running software

process and the hypervisor may not allow access to any process related information.

This class is Experimental.

Table 9: Attributes for RunningVirtualMachine

Attribute Name
Lifecycle Stereotype

(empty = Mature)
Description

_vmBoundary
 Experimental

Similar to a physical device boundary, we allow a virtual machine to have a

constraint boundary.

3.2.3.4 RunningVirtualMachineMonitor

Qualified Name:

CoreModel::CoreSoftwareModel::ObjectClasses::VirtualMachine::RunningVirtualMachineMoni

tor

This is the abstraction of the two different types of VMM.

This class is abstract.

Inherits properties from:

• RunningSoftwareProcess

This class is Experimental.

Table 10: Attributes for RunningVirtualMachineMonitor

Attribute Name
Lifecycle Stereotype

(empty = Mature)
Description

_runningVm
 Experimental

The VMs actively running under this VMM.

3.2.4 Container Model

Container (operating system level virtualization) support is very similar to the VMM/ VM case.

A container engine can be thought of as similar to a hosted VMM. Note that there is no bare

metal equivalent, a container engine always needs to run in an operating system.

TR-512.12 Core Information Model – Software Version 1.4

Page 17 of 19 © 2018 Open Networking Foundation

Unlike a VMM, there is no separate guest operating system. The actual details will depend on the

container implementation, but it seems reasonable to allow for a software process for the

container engine, for each container as well as the application processes1.

Because a container is more lightweight than a hypervisor, they are often deployed in larger

numbers of a smaller size (break an application up into separate containers rather than grouping

applications in a VM).

CoreModel diagram: Software-Container

Figure 3-4 Skeleton Class Diagram of key object classes

3.2.4.1 RunningContainer

Qualified Name:

CoreModel::CoreSoftwareModel::ObjectClasses::SoftwareContainer::RunningContainer

1 https://unix.stackexchange.com/questions/216618/what-do-the-processes-inside-a-docker-container-look-like

https://unix.stackexchange.com/questions/216618/what-do-the-processes-inside-a-docker-container-look-like

TR-512.12 Core Information Model – Software Version 1.4

Page 18 of 19 © 2018 Open Networking Foundation

A container that has been activated by its container engine and hence can provide and consume

resources.

Inherits properties from:

• RunningSoftwareProcess

This class is Experimental.

Table 11: Attributes for RunningContainer

Attribute Name
Lifecycle Stereotype

(empty = Mature)
Description

_containerBoundary
 Experimental

The constraints defining the boundary of the Container.

3.2.4.2 RunningContainerEngine

Qualified Name:

CoreModel::CoreSoftwareModel::ObjectClasses::SoftwareContainer::RunningContainerEngine

A software process that abstracts running applications from the operating system. It provides

some level of isolation, but not as much as a hypervisor.

Inherits properties from:

• RunningSoftwareProcess

This class is Experimental.

Table 12: Attributes for RunningContainerEngine

Attribute Name
Lifecycle Stereotype

(empty = Mature)
Description

_runningContainer
 Experimental

The containers running in this container engine.

3.2.5 Software Model in Context

The next step is to make sure the software model is properly integrated into the ONF CIM core

model.

In previous sections in this document, the ConstraintDomain has been used to define the

boundary of RunningContainer and RunningVirualMachine in the same way as it is used for

Equipment (see the red associations in the figure below).

The ConstraintDomain is also used to provide any other constraints to relevant software entities

as it is for other entities in the model (see green associations in the figure below).

Because ConstraintDomain is used as a decoupling class (similar to how LTP is used to decouple

the transport part of the model), then only one additional association needs to be added to the

software model.

TR-512.12 Core Information Model – Software Version 1.4

Page 19 of 19 © 2018 Open Networking Foundation

The PcEmergentFromRunningSoftwareProcess association allows functionality to be directly

related to a software process (see the relevant blue association in the figure below).

There is an equivalent association to Equipment to represent the emergence of behavior from the

physical units. There is also an association LtpEmergentFromPc that shows that the transport

functions of a device are provided by non-transport functions modelled as PCs.

CoreModel diagram: Software-SoftwareWithPcAndCd

Figure 3-5 Software Model in context

4 Software Examples

Examples are provided in TR-512.A.13.

End of Document

TR-512.A.13_OnfCoreIm-Appendix-SoftwareExamples.pdf

	Disclaimer
	Important note
	Document History
	1 Introduction
	1.1 References
	1.2 Definitions
	1.3 Conventions
	1.4 Viewing UML diagrams
	1.5 Understanding the figures

	2 Introduction to Software
	3 Purpose and essentials of the Software Model
	3.1 Background
	3.2 Model
	3.2.1 File System Model
	3.2.1.1 Directory
	3.2.1.2 File
	3.2.1.3 FileSystem
	3.2.1.4 FileSystemEntry
	3.2.1.5 SymbolicLink

	3.2.2 Core Software Model
	3.2.2.1 InstalledSoftwareComponent
	3.2.2.2 RunningOperatingSystem
	3.2.2.3 RunningSoftwareApplication
	3.2.2.4 RunningSoftwareProcess

	3.2.3 Virtual Machine Model
	3.2.3.1 RunningHostOsVmm
	3.2.3.2 RunningNativeVmm
	3.2.3.3 RunningVirtualMachine
	3.2.3.4 RunningVirtualMachineMonitor

	3.2.4 Container Model
	3.2.4.1 RunningContainer
	3.2.4.2 RunningContainerEngine

	3.2.5 Software Model in Context

	4 Software Examples

