
Bundle Extension
Version 0.1
June 24, 2013

ONF TS-011

Bundle Extension Version 0.1

 © Open Networking Foundation

ONF Document Type: OpenFlow Spec
ONF Document Name: openflow-switch-extension-ext230-stateless

Disclaimer

THIS SPECIFICATION HAS BEEN APPROVED BY THE BOARD OF
DIRECTORS OF THE OPEN NETWORKING FOUNDATION (“ONF”)
BUT WILL NOT BE A FINAL SPECIFICATION UNTIL RATIFIED BY
THE MEMBERS PER ONF’S POLICIES AND PROCEDURES. THE
CONTENTS OF THIS SPECIFICATION MAY BE CHANGED PRIOR TO
PUBLICATION AND SUCH CHANGES MAY INCLUDE THE ADDITION
OR DELETION OF NECESSARY CLAIMS OF PATENT AND OTHER
INTELLECTUAL PROPERTY RIGHTS. THEREFORE, ONF PROVIDES
THIS SPECIFICATION TO YOU ON AN “AS IS” BASIS, AND WITHOUT
WARRANTY OF ANY KIND.

THIS SPECIFICATION IS PROVIDED “AS IS” WITH NO WARRANTIES
WHATSOEVER, INCLUDING ANY WARRANTY OF MERCHANTABILITY,
NONINFRINGEMENT, FITNESS FOR ANY PARTICULAR PURPOSE, OR
ANY WARRANTY OTHERWISE ARISING OUT OF ANY PROPOSAL,
SPECIFICATION OR SAMPLE.

Without limitation, ONF disclaims all liability, including liability for infringement of any
proprietary rights, relating to use of information in this specification and to the implementation
of this specification, and ONF disclaims all liability for cost of procurement of substitute goods
or services, lost profits, loss of use, loss of data or any incidental, consequential, direct, indirect,
or special damages, whether under contract, tort, warranty or otherwise, arising in any way out of
use or reliance upon this specification or any information herein.

No license, express or implied, by estoppel or otherwise, to any Open Networking Foundation or
Open Networking Foundation member intellectual property rights is granted herein.

Except that a license is hereby granted by ONF to copy and reproduce this specification for
internal use only.

Contact the Open Networking Foundation at https://www.opennetworking.org for information on
specification licensing through membership agreements.

Any marks and brands contained herein are the property of their respective owners.

WITHOUT LIMITING THE DISCLAIMER ABOVE, THIS SPECIFICATION OF THE
OPEN NETWORKING FOUNDATION (“ONF”) IS SUBJECT TO THE ROYALTY FREE,
REASONABLE AND NONDISCRIMINATORY (“RANDZ”) LICENSING COMMITMENTS
OF THE MEMBERS OF ONF PURSUANT TO THE ONF INTELLECTUAL PROPERTY
RIGHTS POLICY. ONF DOES NOT WARRANT THAT ALL NECESSARY CLAIMS
OF PATENT WHICH MAY BE IMPLICATED BY THE IMPLEMENTATION OF THIS
SPECIFICATION ARE OWNED OR LICENSABLE BY ONF'S MEMBERS AND
THEREFORE SUBJECT TO THE RANDZ COMMITMENT OF THE MEMBERS.

Bundle Extension Version 0.1

Contents

1 Introduction 2

2 Bundle concepts 2
2.1 Goals . 2
2.2 Example usage . 3
2.3 Error processing . 3
2.4 Atomic Modifications . 4
2.5 Parallelism . 4

3 Bundle messages 5
3.1 Experimenter ID . 5
3.2 Bundle control messages . 5
3.3 Bundle Add message . 6
3.4 Bundle flags . 7
3.5 Bundle properties . 7
3.6 Bundle errors . 8

4 Bundle operations 9
4.1 Creating and opening a bundle . 9
4.2 Adding messages to a bundle . 9
4.3 Closing a bundle . 10
4.4 Committing Bundles . 11
4.5 Discarding Bundles . 12
4.6 Other bundle error conditions . 12

1 Introduction

This document describes an ONF extension for OpenFlow version 1.3.X that enables modifications to be
aggregated into bundles. If all modifications in the bundle succeed, all of the modifications are retained,
but if any errors arise, none of the modifications are retained. The bundle concept is similar to the
transaction concept used in databases. The term bundle is used instead of the term transaction because
the OpenFlow specification uses the term transaction to refer to another concept (e.g. OpenFlow
messages contain a transaction ID).

2 Bundle concepts

2.1 Goals

A bundle is a sequence of OpenFlow requests from the controller that is applied as a single OpenFlow
operation.

The first goal of bundles is to group related state changes on a switch so that all changes are applied
together or that none of them is applied. The second goal is to better synchronise changes across a set

Draft - ONF confidential - do not distribute 2 © 2013; The Open Networking Foundation

Bundle Extension Version 0.1

of OpenFlow switches, bundles can be prepared and pre-validated on each switch and applied at the
same time.

A bundle is specified as all controllers messages encoded with the same bundle_id on a specific controller
connection. Messages part of the bundle are encapsulated in a Bundle Add message (see 4.2), the payload
of the Bundle Add message is formatted like a regular OpenFlow messages and has the same semantic.
The messages part of a bundle are pre-validated as they are stored in the bundle, minimising the risk of
errors when the bundle is applied. The applications of the message included in the Bundle Add message
is postponed to when the bundle is committed (see 4.4).

A switch is not required to accept arbitrary messages in a bundle, a switch may not accept some
message types in bundles, and a switch may not allow all combinations of message types to be bundled
together (see 4.2). For example, a switch should not allow to embed a bundle message within a Bundle
Add message. At a minimum, a switch must be able to support a bundle of multiple flow-mods and
port-mods in any order.

2.2 Example usage

The controller can issue the following sequence of messages to apply a sequence of modifications to-
gether.

1. ONF_BCT_OPEN_REQUEST bundle_id

2. ONF_ET_BUNDLE_ADD_MESSAGE bundle_id modification 1

3. ONF_ET_BUNDLE_ADD_MESSAGE bundle_id ...

4. ONF_ET_BUNDLE_ADD_MESSAGE bundle_id modification n

5. ONF_BCT_CLOSE_REQUEST bundle_id

6. ONF_BCT_COMMIT_REQUEST bundle_id

The switch is expected to behave as follows. When a bundle is opened, modifications are saved into a
temporary staging area without taking effect. When the bundle is committed, the changes in the staging
area are applied to the state (e.g. tables) used by the switch. If an error occurs in one modification, no
change is applied to the state.

2.3 Error processing

The OpenFlow messages part of a bundle must be pre-validated before they are stored in the bundle
(see 4.2). For each message sent by the controller, the switch must verify that the syntax of the message
is valid and that all features in the message are supported features, and immediately return an error
message is this message can not be validated. The switch may optionally verify resource availability
and may commit resource at this time and generate errors. Messages generating errors when added to
the bundle are not stored in the bundle and the bundle is unmodified.

When the bundle is committed, most errors will have been already detected and reported. One of the
message part of the bundle may still fail during commit, for example due to resource availability. In
this case, no message part of the bundle is applied and the switch must generate the error message

Draft - ONF confidential - do not distribute 3 © 2013; The Open Networking Foundation

Bundle Extension Version 0.1

corresponding to the failure (see 4.4). Messages of a bundle should have unique xid to help matching
errors to messages. If none of the messages part of the bundle generate an error message, the switch
inform the controller of the successful application of the bundle.

2.4 Atomic Modifications

Committing the bundle must be controller atomic, i.e. a controller querying the switch must never
see the intermediate state, it must see either the state of the switch with none or with all of the
modifications contained in the bundle having been applied. In particular, is a bundle fails, controllers
should not receive any notification resulting from the partial application of the bundle.

If the flag ONF_BF_ORDERED is specified (see 3.4), the messages part of the bundle must be applied
strictly in order, as if separated by OFPT_BARRIER_REQUEST messages (however no OFPT_BARRIER_REPLY

is generated). If this flag is not specified, messages don’t need to be applied in order.

If the flag ONF_BF_ATOMIC is specified (see 3.4), committing the bundle must also be packet atomic,
i.e. a given packet from an input port or packet-out request should either be processed with none or
with all of the modifications having been applied. Whether this flag is supported would depend on the
switch hardware and software architecture. Packets and messages can temporarily be enqueued while
changes are applied. As the resulting increase in forwarding / processing latency may be unacceptable,
double buffering techniques are often employed.

If the flag ONF_BF_ATOMIC is not specified, committing the bundle does not need to be packet atomic.
Packet may be processed by intermediate state resulting from partial application of the bundle, even
if the bundle commit ultimately fails. The various OpenFlow counters would also reflect the partial
application of the bundle in this case.

2.5 Parallelism

The switch must support exchanging echo request and echo reply messages during the creation and
population of the bundle, the switch must reply to an echo request without waiting for the end of the
bundle. Echo request and echo reply messages can not be included in a bundle. Similarly, asynchronous
messages generated by the switch are not impacted by the bundle, the switch must send status events
without waiting for the end of the bundle.

If the switch supports multiple controller channels or auxiliary connections, the switch must maintains
a separate bundle staging area for each controller-switch connection. This permits multiple bundles to
be incrementally populated in parallel on a given switch. The bundle_id namespace is specific to each
controller connection, so that controllers don’t need to coordinate.

A switch may also optionally support populating multiple bundle in parallel on the same controller
connection, by multiplexing bundle messages with different bundle_id. The controller may create and
send multiple bundles, each identified by a unique bundle_id, and then can apply any of them in
any order by specifying its bundle_id in a commit message. Inversely, a switch may not allow to
create another bundle or accept any regular OpenFlow messages between opening a bundle and either
committing it or discarding it.

Draft - ONF confidential - do not distribute 4 © 2013; The Open Networking Foundation

Bundle Extension Version 0.1

In some implementations, when a switch start storing a bundle, it may lock some of the objects referenced
by the bundle. If a message on the same or another controller connection try to modify an object locked
by a bundle, the switch must reject that message and return an error. A switch is not required to lock
objects referenced by a bundle. If a switch does not lock objects referenced by a bundle, the application
of the bundle may fail if those objects have been modified via other controller connections.

3 Bundle messages

3.1 Experimenter ID

The Experimenter ID of this extension is:

ONF_EXPERIMENTER_ID = 0x4F4E4600

3.2 Bundle control messages

This extension defines the following messages types:

/* Message types */

enum onf_exp_type {

ONF_ET_BUNDLE_CONTROL = 2300,

ONF_ET_BUNDLE_ADD_MESSAGE = 2301,

};

The message ONF_ET_BUNDLE_CONTROL is used for all control messages and uses the following structure:

/* Message structure for ONF_ET_BUNDLE_CONTROL. */

struct onf_bundle_ctrl_msg {

struct ofp_header header;

uint32_t experimenter; /* ONF_EXPERIMENTER_ID. */

uint32_t exp_type; /* ONF_ET_BUNDLE_CONTROL. */

uint32_t bundle_id; /* Identify the bundle. */

uint16_t type; /* ONF_BCT_*. */

uint16_t flags; /* Bitmap of ONF_BF_* flags. */

/* Bundle Property list. */

struct onf_bundle_prop_header properties[0]; /* Zero or more properties. */

};

OFP_ASSERT(sizeof(struct onf_bundle_ctrl_msg) == sizeof(struct onf_exp_header) + 8);

The experimenter field is the Experimenter ID (see 3.1).

The exp_type field is set to one of the bundle message types.

The bundle_id field is the bundle identifier, a 32 bit number chosen by the controller. The bundle
identifier should be unique over the connection during the bundle lifetime.

The type field is the control message type. The control types that are currently defined are:

Draft - ONF confidential - do not distribute 5 © 2013; The Open Networking Foundation

Bundle Extension Version 0.1

/* Bundle control message types */

enum onf_bundle_ctrl_type {

ONF_BCT_OPEN_REQUEST = 0,

ONF_BCT_OPEN_REPLY = 1,

ONF_BCT_CLOSE_REQUEST = 2,

ONF_BCT_CLOSE_REPLY = 3,

ONF_BCT_COMMIT_REQUEST = 4,

ONF_BCT_COMMIT_REPLY = 5,

ONF_BCT_DISCARD_REQUEST = 6,

ONF_BCT_DISCARD_REPLY = 7,

};

The flags field is a bitmask of bundle flags (see 3.4).

The properties field is a list of bundle properties (see ??).

3.3 Bundle Add message

The message ONF_ET_BUNDLE_ADD_MESSAGE uses the following structure:

/* Message structure for ONF_ET_BUNDLE_ADD_MESSAGE.

* Adding a message in a bundle is done with. */

struct onf_bundle_add_msg {

struct ofp_header header;

uint32_t experimenter; /* ONF_EXPERIMENTER_ID. */

uint32_t exp_type; /* ONF_ET_BUNDLE_ADD_MESSAGE. */

uint32_t bundle_id; /* Identify the bundle. */

uint8_t pad[2]; /* Align to 64 bits. */

uint16_t flags; /* Bitmap of ONF_BF_* flags. */

struct ofp_header message; /* Message added to the bundle. */

/* If there is one property or more, ’message’ is followed by:

* - Exactly (message.length + 7)/8*8 - (message.length) (between 0 and 7)

* bytes of all-zero bytes */

/* Bundle Property list. */

//struct onf_bundle_prop_header properties[0]; /* Zero or more properties. */

};

OFP_ASSERT(sizeof(struct onf_bundle_add_msg) == sizeof(struct onf_exp_header) + 16);

The experimenter field is the Experimenter ID (see 3.1).

The exp_type field is set to one of the bundle message types.

The bundle_id field is the bundle identifier, a 32 bit number chosen by the controller. The bundle
identifier should be a bundle that has been previously opened and not yet closed.

The flags field is a bitmask of bundle flags (see 3.4).

The message is a OpenFlow message to be added to the bundle, it can be any OpenFlow message that
the switch can support in a bundle. The field xid in the message must be identical to the field xid of
the ONF_ET_BUNDLE_ADD_MESSAGE message.

Draft - ONF confidential - do not distribute 6 © 2013; The Open Networking Foundation

Bundle Extension Version 0.1

The properties field is a list of bundle properties (see ??).

3.4 Bundle flags

Bundle flags enable to modify the behaviour of a bundle. The bundle flags must be specified on every
bundle message part of the bundle, and they need to be consistent.

The bundle flags that are currently defined are:

/* Bundle configuration flags. */

enum onf_bundle_flags {

ONF_BF_ATOMIC = 1 << 0, /* Execute atomically. */

ONF_BF_ORDERED = 1 << 1, /* Execute in specified order. */

};

� ONF_BF_ATOMIC is set to request fully atomic application of the bundle.

� ONF_BF_ORDERED is set to request the message of the bundle are applied strictly in order.

3.5 Bundle properties

The list of bundle property types that are currently defined are:

/* Bundle property types. */

enum onf_bundle_prop_type {

ONF_ET_BPT_EXPERIMENTER = 0xFFFF, /* Experimenter property. */

};

A property definition contains the property type, length, and any associated data:

/* Common header for all Bundle Properties */

struct onf_bundle_prop_header {

uint16_t type; /* One of ONF_ET_BPT_*. */

uint16_t length; /* Length in bytes of this property. */

};

OFP_ASSERT(sizeof(struct onf_bundle_prop_header) == 4);

The ONF_ET_BPT_EXPERIMENTER property uses the following structure and fields:

/* Experimenter bundle property */

struct onf_bundle_prop_experimenter {

uint16_t type; /* ONF_ET_BPT_EXPERIMENTER. */

uint16_t length; /* Length in bytes of this property. */

uint32_t experimenter; /* Experimenter ID which takes the same

form as in struct

ofp_experimenter_header. */

uint32_t exp_type; /* Experimenter defined. */

/* Followed by:

* - Exactly (length - 12) bytes containing the experimenter data, then

Draft - ONF confidential - do not distribute 7 © 2013; The Open Networking Foundation

Bundle Extension Version 0.1

* - Exactly (length + 7)/8*8 - (length) (between 0 and 7)

* bytes of all-zero bytes */

uint32_t experimenter_data[0];

};

OFP_ASSERT(sizeof(struct onf_bundle_prop_experimenter) == 12);

The experimenter field is the Experimenter ID, which takes the same form as in struct
ofp_experimenter.

3.6 Bundle errors

Where not otherwise specified below, implementations must use error codes defined in the OpenFlow
specification to report issues arising from applying individual modifications.

Errors specific to this extension have the following structure:

/* Message structure for all errors. */

struct onf_error_msg {

struct ofp_header header;

uint16_t type; /* OFPET_EXPERIMENTER. */

uint16_t exp_code; /* One of ONFERR_ET_* above. */

uint32_t experimenter; /* ONF_EXPERIMENTER_ID. */

uint8_t data[0]; /* Up to 64 bytes of failed request. */

};

OFP_ASSERT(sizeof(struct onf_error_msg) == sizeof(struct ofp_error_experimenter_msg));

The type field must be set to OFPET_EXPERIMENTER.

The experimenter field is the Experimenter ID (see 3.1).

The data field contains a copy of the failed request message, truncated to 64 bytes.

The exp_type field is the experimenter error type. The currently defined experimenter error types
are:

/* Error codes */

enum onf_error_exp_type {

ONFERR_ET_UNKNOWN = 2300, /* Unspecified error. */

ONFERR_ET_EPERM = 2301, /* Permissions error. */

ONFERR_ET_BAD_ID = 2302, /* Bundle ID doesn’t exist. */

ONFERR_ET_BUNDLE_EXIST = 2303, /* Bundle ID already exist. */

ONFERR_ET_BUNDLE_CLOSED = 2304, /* Bundle ID is closed. */

ONFERR_ET_OUT_OF_BUNDLES = 2305, /* Too many bundles IDs. */

ONFERR_ET_BAD_TYPE = 2306, /* Unsupported or unknown message control type. */

ONFERR_ET_BAD_FLAGS = 2307, /* Unsupported, unknown, or inconsistent flags. */

ONFERR_ET_MSG_BAD_LEN = 2308, /* Length problem in included message. */

ONFERR_ET_MSG_BAD_XID = 2309, /* Inconsistent or duplicate XID. */

ONFERR_ET_MSG_UNSUP = 2310, /* Unsupported message in this bundle. */

ONFERR_ET_MSG_CONFLICT = 2311, /* Unsupported message combination in this bundle. */

ONFERR_ET_MSG_TOO_MANY = 2312, /* Cant handle this many messages in bundle. */

ONFERR_ET_MSG_FAILED = 2313, /* One message in bundle failed. */

ONFERR_ET_TIMEOUT = 2314, /* Bundle is taking too long. */

ONFERR_ET_BUNDLE_IN_PROGRESS = 2315, /* Bundle is locking the resource. */

};

Draft - ONF confidential - do not distribute 8 © 2013; The Open Networking Foundation

Bundle Extension Version 0.1

4 Bundle operations

4.1 Creating and opening a bundle

To create a bundle, the controller sends a ONF_ET_BUNDLE_CONTROL message with type
ONF_BCT_OPEN_REQUEST. The switch must create a new bundle with id bundle_id attached to the
current connection, with the options specified in the flags and properties. If the operation is successful,
ONF_ET_BUNDLE_CONTROL message with type ONF_BCT_OPEN_REPLY must be returned by the switch. If
an error arises, an error message is returned.

If the bundle_id already refers to an existing bundle attached to the same connection, the switch
must refuse to open the new bundle and send an ofp_error_msg with OFPET_EXPERIMENTER type and
ONFERR_ET_BAD_ID code. The existing bundle identified by bundle_id must be discarded.

If the switch can not open this bundle because its having too many opened bundles on the switch
or attached to the current connection, the switch must refuse to open the new bundle and send
an ofp_error_msg with OFPET_EXPERIMENTER type and ONFERR_ET_OUT_OF_BUNDLES code. If the
switch can not open the bundle because the connection is using an unreliable transport, the switch
must refuse to open the new bundle and send an ofp_error_msg with OFPET_EXPERIMENTER type and
ONFERR_ET_OUT_OF_BUNDLES code.

If the flags field request some feature that can not be implemented by the switch, the switch must
refuse to open the new bundle and send an ofp_error_msg with OFPET_EXPERIMENTER type and
ONFERR_ET_BAD_FLAGS code.

4.2 Adding messages to a bundle

The switch adds message to a bundle using the ONF_ET_BUNDLE_ADD_MESSAGE. After the bundle is
opened, the controller can sends a sequence of ONF_ET_BUNDLE_ADD_MESSAGE messages to populate the
bundle. Each ONF_ET_BUNDLE_ADD_MESSAGE includes an OpenFlow message, this OpenFlow message is
validated, and if successful it is stored in the bundle specified by bundle_id on the current connection.
If a message validation error or a bundle error condition arise, an error message is returned.

Message validation includes at minimum syntax checking and that all features are supported, and it
may optionally include checking resource availability (see 2.3). If a message fails validation, an error
message must be returned. The error message must use the xid of the offending message, the error data
field corresponding to that message and the error code corresponding to the validation failure.

If the bundle_id refers to a bundle that does not exist on the current connection, the corresponding
bundle is created using arguments from the ONF_ET_BUNDLE_ADD_MESSAGE message. If an error arise
from creating the bundle, the relevant error message is returned (see 4.1). No ONF_ET_BUNDLE_CONTROL

message with type ONF_BCT_OPEN_REPLY is returned by the switch in this case.

If the bundle_id refers to a bundle that is already closed, the switch must refuse to add the message
to the bundle, discard the bundle and send an ofp_error_msg with OFPET_EXPERIMENTER type and
ONFERR_ET_BUNDLE_CLOSED code.

Draft - ONF confidential - do not distribute 9 © 2013; The Open Networking Foundation

Bundle Extension Version 0.1

If the flags field is different from the flags that were specified when the bundle was opened, the switch
must refuse to add the message to the bundle, discard the bundle and send an ofp_error_msg with
OFPET_EXPERIMENTER type and ONFERR_ET_BAD_FLAGS code.

If the message in the request is normally supported on the switch but is not supported in a bun-
dle, the switch must refuse to add the message to the bundle and send an ofp_error_msg with
OFPET_EXPERIMENTER type and ONFERR_ET_MSG_UNSUP code. This is the case for hello, echo and bundle
messages, messages that are not requests, or if the implementation does not support including a specific
modification message in a bundle.

If the message in the request is incompatible with another message already stored in the bun-
dle, the switch must refuse to add the message to the bundle and send an ofp_error_msg with
OFPET_EXPERIMENTER type and ONFERR_ET_MSG_CONFLICT code.

If the bundle is full and can not fit the message in the request, the switch must refuse to
add the message to the bundle and send an ofp_error_msg with OFPET_EXPERIMENTER type and
ONFERR_ET_MSG_TOO_MANY code.

If the message in the request does not have a valid length field, the switch must refuse to
add the message to the bundle and send an ofp_error_msg with OFPET_EXPERIMENTER type and
ONFERR_ET_MSG_BAD_LEN code.

Message added in a bundle should have a unique xid to help matching errors to messages, and the xid of
the bundle add message must be the same. A switch may optionally verify that the two xid of a message
are consistent or that two messages of the bundle don’t have the same xid, and if this is the case refuse
to add the new message to the bundle and send an ofp_error_msg with OFPET_EXPERIMENTER type
and ONFERR_ET_MSG_BAD_XID code.

4.3 Closing a bundle

To finish recording a bundle, the controller may sends a ONF_ET_BUNDLE_CONTROL message with type
ONF_BCT_CLOSE_REQUEST. The switch must close the bundle specified by bundle_id on the current
connection. After closing the bundle, it can no longer be modified and no messages can be added to
it, it can only be committed or discarded. Closing a bundle is optional. If the operation is successful,
ONF_ET_BUNDLE_CONTROL message with type ONF_BCT_CLOSE_REPLY must be returned by the switch. If
an error arises, an error message is returned.

If the bundle_id refers to a bundle that does not exist, the switch must reject the request and send an
ofp_error_msg with OFPET_EXPERIMENTER type and ONFERR_ET_BAD_ID code.

If the bundle_id refers to a bundle that is already closed, the switch must refuse to close to
the bundle, discard the bundle and send an ofp_error_msg with OFPET_EXPERIMENTER type and
ONFERR_ET_BUNDLE_CLOSED code.

If the flags field is different from the flags that were specified when the bundle was opened, the
switch must refuse to close to the bundle, discard the bundle and send an ofp_error_msg with
OFPET_EXPERIMENTER type and ONFERR_ET_BAD_FLAGS code.

The switch may optionally do additional validation of the messages part of the bundle as the result of
the close request, such as validating resource availability. For each message that fails this additional

Draft - ONF confidential - do not distribute 10 © 2013; The Open Networking Foundation

Bundle Extension Version 0.1

validation, an error message must be generated that refer to the offending message. After sending those
individual error messages, the switch must discard the bundle and send an additional ofp_error_msg
with OFPET_EXPERIMENTER type and ONFERR_ET_MSG_FAILED code.

4.4 Committing Bundles

To finish and apply the bundle, the controller sends a ONF_ET_BUNDLE_CONTROL message with type
ONF_BCT_COMMIT_REQUEST. The switch must commit the bundle specified by bundle_id on the current
connection, it must apply all messages stored in the bundle as a single operation or return an error.
The commit operation and the way the message part of the bundle are applied depend on the bundle
flags (see 3.4). If the bundle was not closed prior to this request, it is automatically closed (see 4.3).

The commit is successful only if all messages parts of the bundle can be applied without error. If the
bundle does not contain any message, commit is always successful. If the commit is successful, the switch
must apply all messages of the bundle as a single operation, and a ONF_ET_BUNDLE_CONTROL message with
type ONF_BCT_CLOSE_REPLY must be returned by the switch. The ONF_ET_BUNDLE_CONTROL message
with type ONF_BCT_CLOSE_REPLY must be sent to the controller after the processing of all messages part
of the bundle are guaranteed to no longer fail or produce an error.

If one or more message part of the bundle can not be applied without error, for example due to resource
availability, the commit fails and all messages part of the bundle must be discarded without being
applied. When the commit fails, the switch must generate an error message corresponding to the
message that could not be applied. The error message must use the xid of the offending message,
the error data field corresponding to that message and the error code corresponding to the failure. If
multiple messages are generating errors, the switch may return only the first error found or generate
multiple error messages for the same bundle. After sending those individual error messages, the switch
must send an additional ofp_error_msg with OFPET_EXPERIMENTER type and ONFERR_ET_MSG_FAILED

code.

After a commit operation, the bundle is discarded, whether the commit was successful or not. After
receiving a successful reply or error message for this operation, the controller can reuse the bundle_id.

Modification requests may require replies to be returned to the controller or events to be generated.
Because any message of the bundle may fail, replies and events can only be generated once all modifi-
cations in the bundle have been applied. For replies, each of these replies contains the transaction ID
of the corresponding request.

If the bundle_id refers to a bundle that does not exist, the switch must reject the request and send an
ofp_error_msg with OFPET_EXPERIMENTER type and ONFERR_ET_BAD_ID code.

If the flags field is different from the flags that were specified when the bundle was opened, the
switch must refuse to commit the bundle, discard the bundle and send an ofp_error_msg with
OFPET_EXPERIMENTER type and ONFERR_ET_BAD_FLAGS code.

Draft - ONF confidential - do not distribute 11 © 2013; The Open Networking Foundation

4.5 Discarding Bundles

To finish and discard the bundle, the controller sends a ONF_ET_BUNDLE_CONTROL message with type
ONF_BCT_DISCARD_REQUEST. The switch must discard the bundle specified by bundle_id on the cur-
rent connection, and all messages part of the bundle are discarded. If the operation is successful, a
ONF_ET_BUNDLE_CONTROL message with type ONF_BCT_DISCARD_REPLY must be returned by the switch.
If an error arises, an error message is returned. After receiving either a successful reply or an error
message, the controller can reuse the bundle_id.

All implementations must be able to process a discard request on a existing bundle on the current connec-
tion without triggering errors. If the bundle_id refers to a bundle that does not exist, the switch must
reject the request and send an ofp_error_msg with OFPET_EXPERIMENTER type and ONFERR_ET_BAD_ID

code.

4.6 Other bundle error conditions

If a ONF_ET_BUNDLE_CONTROL message contains an invalid type, the switch must reject the request and
send an ofp_error_msg with OFPET_EXPERIMENTER type and ONFERR_ET_BAD_TYPE code.

If a ONF_ET_BUNDLE_CONTROL or ONF_ET_BUNDLE_ADD_MESSAGE message specifies flags different for
those already specified on an existing bundle, the switch must reject the request and send an
ofp_error_msg with OFPET_EXPERIMENTER type and ONFERR_ET_BAD_FLAGS code.

If the switch does not receive any ONF_ET_BUNDLE_CONTROL or ONF_ET_BUNDLE_ADD_MESSAGE message
for an opened bundle_id for a switch defined time greater than 1s, it may send an ofp_error_msg

with OFPET_EXPERIMENTER type and ONFERR_ET_TIMEOUT code. If the switch does not receive any new
message in a bundle apart from echo request and replies for a switch defined time greater than 1s, it
may send an ofp_error_msg with OFPET_EXPERIMENTER type and ONFERR_ET_TIMEOUT code.

If an OpenFlow message can not be processed because a bundle is locking a resource this message is
using, the switch must reject that message and send an ofp_error_msg with OFPET_EXPERIMENTER

type and ONFERR_ET_BUNDLE_IN_PROGRESS code. If a switch can not process other messages between
opening a bundle and either committing it or discarding it, the switch must reject that message and
send an ofp_error_msg with OFPET_EXPERIMENTER type and ONFERR_ET_BUNDLE_IN_PROGRESS code.

12

	Introduction
	Bundle concepts
	Goals
	Example usage
	Error processing
	Atomic Modifications
	Parallelism

	Bundle messages
	Experimenter ID
	Bundle control messages
	Bundle Add message
	Bundle flags
	Bundle properties
	Bundle errors

	Bundle operations
	Creating and opening a bundle
	Adding messages to a bundle
	Closing a bundle
	Committing Bundles
	Discarding Bundles
	Other bundle error conditions

